One of the challenges in hyperspectral data analysis is the presence of mixed
pixels. Mixed pixels are the result of low spatial resolution of hyperspectral
sensors. Spectral unmixing methods decompose a mixed pixel into a set of
endmembers and abundance fractions. Due to nonnegativity constraint on
abundance fraction values, NMF based methods are well suited to this problem.
In this paper multilayer NMF has been used to improve the results of NMF
methods for spectral unmixing of hyperspectral data under the linear mixing
framework. Sparseness constraint on both spectral signatures and abundance
fractions matrices are used in this paper. Evaluation of the proposed algorithm
is done using synthetic and real datasets in terms of spectral angle and
abundance angle distances. Results show that the proposed algorithm outperforms
other previously proposed methods.Comment: 4 pages, conferenc