research

The even Clifford structure of the fourth Severi variety

Abstract

The Hermitian symmetric space M=EIIIM=\mathrm{EIII} appears in the classification of complete simply connected Riemannian manifolds carrying a parallel even Clifford structure. This means the existence of a real oriented Euclidean vector bundle EE over it together with an algebra bundle morphism φ:Cl0(E)End(TM)\varphi:\mathrm{Cl}^0(E) \rightarrow \mathrm{End}(TM) mapping Λ2E\Lambda^2 E into skew-symmetric endomorphisms, and the existence of a metric connection on EE compatible with φ\varphi. We give an explicit description of such a vector bundle EE as a sub-bundle of End(TM)\mathrm{End}(TM). From this we construct a canonical differential 8-form on EIII\mathrm{EIII}, associated with its holonomy Spin(10)U(1)U(16)\mathrm{Spin}(10) \cdot \mathrm{U}(1) \subset \mathrm{U}(16), that represents a generator of its cohomology ring. We relate it with a Schubert cycle structure by looking at EIII\mathrm{EIII} as the smooth projective variety V(4)CP26V_{(4)} \subset \mathbb{C}P^{26} known as the fourth Severi variety

    Similar works