We derive a new equation of state (EoS) for neutron stars (NS) from the outer
crust to the core based on modern microscopic Brueckner-Hartree-Fock (BHF)
calculations using the Argonne v18 potential plus three-body forces
computed with the Urbana model. To deal with the inhomogeneous structures of
matter in the NS crust, we use the recent Barcelona-Catania-Paris-Madrid (BCPM)
nuclear energy density functional that is directly based on the same
microscopic BHF calculations, and which is able to reproduce the ground-state
properties of nuclei along the periodic table. The EoS of the outer crust
requires the masses of neutron-rich nuclei, which are obtained through
Hartree-Fock-Bogoliubov calculations with the BCPM functional when they are
unknown experimentally. To compute the inner crust, Thomas-Fermi calculations
in Wigner-Seitz cells are performed with the same functional. Existence of
nuclear pasta is predicted in a range of average baryon densities between
≃0.067 fm−3 and ≃0.0825 fm−3, where the transition to
the core takes place. The NS core is computed from the nuclear EoS of the BHF
calculation assuming non-exotic constituents (core of npeμ matter). In each
region of the star, we discuss the comparison of the new EoS with previous
EoSes for the complete NS structure, in particular, with the Lattimer-Swesty
EoS and with the Shen et al. EoS widely used in astrophysical calculations. The
new microscopically derived EoS fulfills at the same time a NS maximum mass of
2~M⊙ with a radius of 10 km, and a 1.5~M⊙ NS with a radius of
11.7 km.Comment: 23 pages, 17 figures, revised version accepted for publication in
Astronomy & Astrophysic