research

The first nontrivial eigenvalue for a system of pp-Laplacians with Neumann and Dirichlet boundary conditions

Abstract

We deal with the first eigenvalue for a system of two pp-Laplacians with Dirichlet and Neumann boundary conditions. If \Delta_{p}w=\mbox{div}(|\nabla w|^{p-2}w) stands for the pp-Laplacian and αp+βq=1,\frac{\alpha}{p}+\frac{\beta}{q}=1, we consider {Δpu=λαuα2uvβ in Ω,Δqv=λβuαvβ2v in Ω, \begin{cases} -\Delta_pu= \lambda \alpha |u|^{\alpha-2} u|v|^{\beta} &\text{ in }\Omega,\\ -\Delta_q v= \lambda \beta |u|^{\alpha}|v|^{\beta-2}v &\text{ in }\Omega,\\ \end{cases} with mixed boundary conditions u=0,vq2vν=0,on Ω. u=0, \qquad |\nabla v|^{q-2}\dfrac{\partial v}{\partial \nu }=0, \qquad \text{on }\partial \Omega. We show that there is a first non trivial eigenvalue that can be characterized by the variational minimization problem λp,qα,β=min{Ωuppdx+ΩvqqdxΩuαvβdx ⁣:(u,v)Ap,qα,β}, \lambda_{p,q}^{\alpha,\beta} = \min \left\{\dfrac{\displaystyle\int_{\Omega}\dfrac{|\nabla u|^p}{p}\, dx +\int_{\Omega}\dfrac{|\nabla v|^q}{q}\, dx} {\displaystyle\int_{\Omega} |u|^\alpha|v|^{\beta}\, dx} \colon (u,v)\in \mathcal{A}_{p,q}^{\alpha,\beta}\right\}, where Ap,qα,β={(u,v)W01,p(Ω)×W1,q(Ω) ⁣:uv≢0 and Ωuαvβ2vdx=0}. \mathcal{A}_{p,q}^{\alpha,\beta}=\left\{(u,v)\in W^{1,p}_0(\Omega)\times W^{1,q}(\Omega)\colon uv\not\equiv0\text{ and }\int_{\Omega}|u|^{\alpha}|v|^{\beta-2}v \, dx=0\right\}. We also study the limit of λp,qα,β\lambda_{p,q}^{\alpha,\beta} as p,qp,q\to \infty assuming that αpΓ(0,1)\frac{\alpha}{p} \to \Gamma \in (0,1), and qpQ(0,) \frac{q}{p} \to Q \in (0,\infty) as p,q.p,q\to \infty. We find that this limit problem interpolates between the pure Dirichlet and Neumann cases for a single equation when we take Q=1Q=1 and the limits Γ1\Gamma \to 1 and Γ0\Gamma \to 0.Comment: 21 pages, 1 figur

    Similar works

    Full text

    thumbnail-image

    Available Versions