The aim of the present work is the introduction of a viscosity type solution,
called strong-viscosity solution to distinguish it from the classical one, with
the following peculiarities: it is a purely analytic object; it can be easily
adapted to more general equations than classical partial differential
equations. First, we introduce the notion of strong-viscosity solution for
semilinear parabolic partial differential equations, defining it, in a few
words, as the pointwise limit of classical solutions to perturbed semilinear
parabolic partial differential equations; we compare it with the standard
definition of viscosity solution. Afterwards, we extend the concept of
strong-viscosity solution to the case of semilinear parabolic path-dependent
partial differential equations, providing an existence and uniqueness result.Comment: arXiv admin note: text overlap with arXiv:1401.503