research

Suppression of magnetism in Ba5AlIr2O11: interplay of Hund's coupling, molecular orbitals and spin-orbit interaction

Abstract

The electronic and magnetic properties of Ba5_5AlIr2_2O11_{11} containing Ir-Ir dimers are investigated using the GGA and GGA+SOC calculations. We found that strong suppression of the magnetic moment in this compound recently found in [J. Terzic {\it et al.}, Phys. Rev. B {\bf 91}, 235147 (2015)] is not due to charge-ordering, but is related to the joint effect of the spin-orbit interaction and strong covalency, resulting in the formation of metal-metal bonds. They conspire and act against the intra-atomic Hund's rule exchange interaction to reduce total magnetic moment of the dimer. We argue that the same mechanism could be relevant for other 4d4d and 5d5d dimerized transition metal compounds

    Similar works