research

Some operator Bellman type inequalities

Abstract

In this paper, we employ the Mond--Pe\v{c}ari\'c method to establish some reverses of the operator Bellman inequality under certain conditions. In particular, we show \begin{equation*} \delta I_{\mathscr K}+\sum_{j=1}^n\omega_j\Phi_j\left((I_{\mathscr H}-A_j)^{p}\right)\ge \left(\sum_{j=1}^n\omega_j\Phi_j(I_{\mathscr H}-A_j)\right)^{p} \,, \end{equation*} where Aj(1jn)A_j\,\,(1\leq j\leq n) are self-adjoint contraction operators with 0mIHAjMIH0\leq mI_{\mathscr H}\le A_j \le MI_{\mathscr H}, Φj\Phi_j are unital positive linear maps on B(H){\mathbb B}({\mathscr H}), ωjR+(1jn)\omega_j\in\mathbb R_+ \,\,(1\leq j\leq n), 0<p<10 < p < 1 and δ=(1p)(1p(1m)p(1M)pMm)pp1+(1M)(1m)p(1m)(1M)pMm\delta=(1-p)\left(\frac{1}{p}\frac{(1-m)^p-(1-M)^p}{M-m}\right)^{\frac{p}{p-1}}+\frac{(1-M)(1-m)^p-(1-m)(1-M)^p}{M-m} . We also present some refinements of the operator Bellman inequality.Comment: 15 pages, to appear in Indag. Math. (N.S.

    Similar works

    Full text

    thumbnail-image

    Available Versions