research

Multispecies Weighted Hurwitz Numbers

Abstract

The construction of hypergeometric 2D2D Toda τ\tau-functions as generating functions for weighted Hurwitz numbers is extended to multispecies families. Both the enumerative geometrical significance of multispecies weighted Hurwitz numbers, as weighted enumerations of branched coverings of the Riemann sphere, and their combinatorial significance in terms of weighted paths in the Cayley graph of SnS_n are derived. The particular case of multispecies quantum weighted Hurwitz numbers is studied in detail.Comment: this is substantially enhanced version of arXiv:1410.881

    Similar works