research

Cavity quantum electrodynamics with three-dimensional photonic bandgap crystals

Abstract

This paper gives an overview of recent work on three-dimensional (3D) photonic crystals with a "full and complete" 3D photonic band gap. We review five main aspects: 1) spontaneous emission inhibition, 2) spatial localization of light within a tiny nanoscale volume (aka "a nanobox for light"), 3) the introduction of a gain medium leading to thresholdless lasers, 4) breaking of the weak-coupling approximation of cavity QED, both in the frequency and in the time-domain, 5) decoherence, in particular the shielding of vacuum fluctuations by a 3D photonic bandgap. In addition, we list and evaluate all known photonic crystal structures with a demonstrated 3D band gap.Comment: 21 pages, 6 figures, 2 tables, Chapter 8 in "Light Localisation and Lasing: Random and Pseudorandom Photonic Structures", Eds. M. Ghulinyan and L. Pavesi (Cambridge University Press, Cambridge, 2015, ISBN 978-1-107-03877-6

    Similar works