research

Solving the inhomogeneous Bethe-Salpeter Equation in Minkowski space: the zero-energy limit

Abstract

For the first time, the inhomogeneous Bethe-Salpeter Equation for an interacting system, composed by two massive scalars exchanging a massive scalar, is numerically investigated in ladder approximation, directly in Minkowski space, by using an approach based on the Nakanishi integral representation. In this paper, the limiting case of zero-energy states is considered, extending the approach successfully applied to bound states. The numerical values of scattering lengths, are calculated for several values of the Yukawa coupling constant, by using two different integral equations that stem within the Nakanishi framework. Those low-energy observables are compared with (i) the analogous quantities recently obtained in literature, within a totally different framework and (ii) the non relativistic evaluations, for illustrating the relevance of a non perturbative, genuine field theoretical treatment in Minkowski space, even in the low-energy regime. Moreover, dynamical functions, like the Nakanishi weight functions and the distorted part of the zero-energy Light-front wave functions are also presented. Interestingly, a highly non trivial issue related to the abrupt change in the width of the support of the Nakanishi weight function, when the zero-energy limit is approached, is elucidated, ensuring a sound basis to the forthcoming evaluation of phase-shifts.Comment: 23 pages and 4 figures. Minor changes in the abstract, typos fixed and added a figure. Submitted for publicatio

    Similar works

    Full text

    thumbnail-image