A classical optics waveguide structure is proposed to simulate resonances of
short range one-dimensional potentials in quantum mechanics. The analogy is
based on the well known resemblance between the guided and radiation modes of a
waveguide with the bound and scattering states of a quantum well. As resonances
are scattering states that spend some time in the zone of influence of the
scatterer, we associate them with the leaky modes of a waveguide, the latter
characterized by suffering attenuation in the direction of propagation but
increasing exponentially in the transverse directions. The resemblance is
complete since resonances (leaky modes) can be interpreted as bound states
(guided modes) with definite lifetime (longitudinal shift). As an immediate
application we calculate the leaky modes (resonances) associated with a
dielectric homogeneous slab (square well potential) and show that these modes
are attenuated as they propagate.Comment: The title has been modified to describe better the contents of the
article. Some paragraphs have been added to clarify the result