research

Measurement of the Angular Dependence of the Dipole-Dipole Interaction Between Two Individual Rydberg Atoms at a F\"orster Resonance

Abstract

We measure the angular dependence of the resonant dipole-dipole interaction between two individual Rydberg atoms with controlled relative positions. By applying a combination of static electric and magnetic fields on the atoms, we demonstrate the possibility to isolate a single interaction channel at a F\"orster resonance, that shows a well-defined angular dependence. We first identify spectroscopically the F\"orster resonance of choice and we then perform a direct measurement of the interaction strength between the two atoms as a function of the angle between the internuclear axis and the quantization axis. Our results show good agreement with the expected angular dependence (13cos2θ)\propto(1-3\cos^2\theta), and represent an important step towards quantum state engineering in two-dimensional arrays of individual Rydberg atoms.Comment: 5 pages, 4 figure

    Similar works

    Full text

    thumbnail-image