We measure the angular dependence of the resonant dipole-dipole interaction
between two individual Rydberg atoms with controlled relative positions. By
applying a combination of static electric and magnetic fields on the atoms, we
demonstrate the possibility to isolate a single interaction channel at a
F\"orster resonance, that shows a well-defined angular dependence. We first
identify spectroscopically the F\"orster resonance of choice and we then
perform a direct measurement of the interaction strength between the two atoms
as a function of the angle between the internuclear axis and the quantization
axis. Our results show good agreement with the expected angular dependence
∝(1−3cos2θ), and represent an important step towards quantum
state engineering in two-dimensional arrays of individual Rydberg atoms.Comment: 5 pages, 4 figure