slides

Monolayer Excitonic Laser

Abstract

Recently, two-dimensional (2D) materials have opened a new paradigm for fundamental physics explorations and device applications. Unlike gapless graphene, monolayer transition metal dichalcogenide (TMDC) has new optical functionalities for next generation ultra-compact electronic and opto-electronic devices. When TMDC crystals are thinned down to monolayers, they undergo an indirect to direct bandgap transition, making it an outstanding 2D semiconductor. Unique electron valley degree of freedom, strong light matter interactions and excitonic effects were observed. Enhancement of spontaneous emission has been reported on TMDC monolayers integrated with photonic crystal and distributed Bragg reflector microcavities. However, the coherent light emission from 2D monolayer TMDC has not been demonstrated, mainly due to that an atomic membrane has limited material gain volume and is lack of optical mode confinement. Here, we report the first realization of 2D excitonic laser by embedding monolayer tungsten disulfide (WS2) in a microdisk resonator. Using a whispering gallery mode (WGM) resonator with a high quality factor and optical confinement, we observed bright excitonic lasing in visible wavelength. The Si3N4/WS2/HSQ sandwich configuration provides a strong feedback and mode overlap with monolayer gain. This demonstration of 2D excitonic laser marks a major step towards 2D on-chip optoelectronics for high performance optical communication and computing applications.Comment: 15 pages, 4 figure

    Similar works

    Full text

    thumbnail-image

    Available Versions