research

Hydrodynamic Collective Effects of Active Protein Machines in Solution and Lipid Bilayers

Abstract

The cytoplasm and biomembranes in biological cells contain large numbers of proteins that cyclically change their shapes. They are molecular machines that can function as molecular motors or carry out many other tasks in the cell. We analyze the effects that hydrodynamic flows induced by active proteins have on other passive molecules in solution or membranes. We show that the diffusion constants of passive particles are enhanced substantially. Furthermore, when gradients of active proteins are present, a chemotaxis-like drift of passive particles takes place. In lipid bilayers, the effects are strongly nonlocal, so that active inclusions in the membrane contribute to diffusion enhancement and the drift. The results indicate that the transport properties of passive particles in systems containing active proteins machines operating under nonequilibrium conditions differ from their counterparts in systems at thermal equilibrium

    Similar works