In the present study we investigate the irradiation-defects hybridized
graphene scaffold as one potential building material for the anode of Li-ion
batteries. Designating the Wigner V22 defect as a representative, we illustrate
the interplay of Li atoms with the irradiation-defects in graphene scaffolds.
We examine the adsorption energetics and diffusion kinetics of Li in the
vicinity of a Wigner V22 defect using density functional theory calculations.
The equilibrium Li adsorption sites at the defect are identified and shown to
be energetically preferable to the adsorption sites on pristine (bilayer)
graphene. Meanwhile the minimum energy paths and corresponding energy barriers
for Li migration at the defect are determined and computed. We find that while
the defect is shown to exhibit certain trapping effects on Li motions on the
graphene surface, it appears to facilitate the interlayer Li diffusion and
enhance the charge capacity within its vicinity because of the reduced
interlayer spacing and characteristic symmetry associated with the defect. Our
results provide critical assessment for the application of irradiated graphene
scaffolds in Li-ion batteries.Comment: 23 pages, 5 figure