research

Unfolding the color code

Abstract

The topological color code and the toric code are two leading candidates for realizing fault-tolerant quantum computation. Here we show that the color code on a dd-dimensional closed manifold is equivalent to multiple decoupled copies of the dd-dimensional toric code up to local unitary transformations and adding or removing ancilla qubits. Our result not only generalizes the proven equivalence for d=2d=2, but also provides an explicit recipe of how to decouple independent components of the color code, highlighting the importance of colorability in the construction of the code. Moreover, for the dd-dimensional color code with d+1d+1 boundaries of d+1d+1 distinct colors, we find that the code is equivalent to multiple copies of the dd-dimensional toric code which are attached along a (d1)(d-1)-dimensional boundary. In particular, for d=2d=2, we show that the (triangular) color code with boundaries is equivalent to the (folded) toric code with boundaries. We also find that the dd-dimensional toric code admits logical non-Pauli gates from the dd-th level of the Clifford hierarchy, and thus saturates the bound by Bravyi and K\"{o}nig. In particular, we show that the dd-qubit control-ZZ logical gate can be fault-tolerantly implemented on the stack of dd copies of the toric code by a local unitary transformation.Comment: 46 pages, 15 figure

    Similar works