research

Boosted Dark Matter in IceCube and at the Galactic Center

Abstract

We show that the event excess observed by the IceCube collaboration at TeV--PeV energies, usually interpreted as evidence for astrophysical neutrinos, can be explained alternatively by the scattering of highly boosted dark matter particles. Specifically, we consider a scenario where a 4\sim 4 PeV scalar dark matter particle ϕ\phi can decay to a much lighter dark fermion χ\chi, which in turn scatters off nuclei in the IceCube detector. Besides these events, which are exclusively shower-like, the model also predicts a secondary population of events at O(100TeV)\mathcal{O}(100 \text{TeV}) originating from the 3-body decay ϕχχˉa\phi \to \chi \bar\chi a, where aa is a pseudoscalar which mediates dark matter--Standard Model interactions and whose decay products include neutrinos. This secondary population also includes track-like events, and both populations together provide an excellent fit to the IceCube data. We then argue that a relic abundance of light Dark Matter particles χ\chi, which may constitute a subdominant component of the Dark Matter in the Universe, can have exactly the right properties to explain the observed excess in GeV gamma rays from the galactic center region. Our boosted Dark Matter scenario also predicts fluxes of O(10)\mathcal{O}(10) TeV positrons and O(100TeV)\mathcal{O}(100 \text{TeV}) photons from 3-body cascade decays of the heavy Dark Matter particle ϕ\phi, and we show how these can be used to constrain parts of the viable parameter space of the model. Direct detection limits are weak due to the pseudoscalar couplings of χ\chi. Accelerator constraints on the pseudoscalar mediator aa lead to the conclusion that the preferred mass of aa is 10\gtrsim 10 GeV and that large coupling to bb quarks but suppressed or vanishing coupling to leptons are preferred.Comment: 26 pages, 9 figures, 2 tables. v2: References added, matches version to be published in JHEP. v3: Acknowledgement adde

    Similar works

    Full text

    thumbnail-image

    Available Versions

    Last time updated on 04/06/2019