research

Largest minimal inversion-complete and pair-complete sets of permutations

Abstract

We solve two related extremal problems in the theory of permutations. A set QQ of permutations of the integers 1 to nn is inversion-complete (resp., pair-complete) if for every inversion (j,i)(j,i), where 1 \le i \textless{} j \le n, (resp., for every pair (i,j)(i,j), where iji\not= j) there exists a permutation in~QQ where jj is before~ii. It is minimally inversion-complete if in addition no proper subset of~QQ is inversion-complete; and similarly for pair-completeness. The problems we consider are to determine the maximum cardinality of a minimal inversion-complete set of permutations, and that of a minimal pair-complete set of permutations. The latter problem arises in the determination of the Carath\'eodory numbers for certain abstract convexity structures on the (n1)(n-1)-dimensional real and integer vector spaces. Using Mantel's Theorem on the maximum number of edges in a triangle-free graph, we determine these two maximum cardinalities and we present a complete description of the optimal sets of permutations for each problem. Perhaps surprisingly (since there are twice as many pairs to cover as inversions), these two maximum cardinalities coincide whenever n4n \ge 4

    Similar works