A weak formulation for the so-called "semilinear strongly damped wave
equation with constraint" is introduced and a corresponding notion of solution
is defined. The main idea in this approach consists in the use of duality
techniques in Sobolev-Bochner spaces, aimed at providing a suitable
"relaxation" of the constraint term. A global in time existence result is
proved under the natural condition that the initial data have finite "physical"
energy.Comment: 21 page