research

Adaptively Secure Coin-Flipping, Revisited

Abstract

The full-information model was introduced by Ben-Or and Linial in 1985 to study collective coin-flipping: the problem of generating a common bounded-bias bit in a network of nn players with t=t(n)t=t(n) faults. They showed that the majority protocol can tolerate t=O(n)t=O(\sqrt n) adaptive corruptions, and conjectured that this is optimal in the adaptive setting. Lichtenstein, Linial, and Saks proved that the conjecture holds for protocols in which each player sends a single bit. Their result has been the main progress on the conjecture in the last 30 years. In this work we revisit this question and ask: what about protocols involving longer messages? Can increased communication allow for a larger fraction of faulty players? We introduce a model of strong adaptive corruptions, where in each round, the adversary sees all messages sent by honest parties and, based on the message content, decides whether to corrupt a party (and intercept his message) or not. We prove that any one-round coin-flipping protocol, regardless of message length, is secure against at most O~(n)\tilde{O}(\sqrt n) strong adaptive corruptions. Thus, increased message length does not help in this setting. We then shed light on the connection between adaptive and strongly adaptive adversaries, by proving that for any symmetric one-round coin-flipping protocol secure against tt adaptive corruptions, there is a symmetric one-round coin-flipping protocol secure against tt strongly adaptive corruptions. Returning to the standard adaptive model, we can now prove that any symmetric one-round protocol with arbitrarily long messages can tolerate at most O~(n)\tilde{O}(\sqrt n) adaptive corruptions. At the heart of our results lies a novel use of the Minimax Theorem and a new technique for converting any one-round secure protocol into a protocol with messages of polylog(n)polylog(n) bits. This technique may be of independent interest

    Similar works

    Full text

    thumbnail-image

    Available Versions