research

Generalized linear Boltzmann equations for particle transport in polycrystals

Abstract

The linear Boltzmann equation describes the macroscopic transport of a gas of non-interacting point particles in low-density matter. It has wide-ranging applications, including neutron transport, radiative transfer, semiconductors and ocean wave scattering. Recent research shows that the equation fails in highly-correlated media, where the distribution of free path lengths is non-exponential. We investigate this phenomenon in the case of polycrystals whose typical grain size is comparable to the mean free path length. Our principal result is a new generalized linear Boltzmann equation that captures the long-range memory effects in this setting. A key feature is that the distribution of free path lengths has an exponential decay rate, as opposed to a power-law distribution observed in a single crystal

    Similar works