research

On primitive integer solutions of the Diophantine equation t2=G(x,y,z)t^2=G(x,y,z) and related results

Abstract

In this paper we investigate Diophantine equations of the form T2=G(X),  X=(X1,,Xm)T^2=G(\overline{X}),\; \overline{X}=(X_{1},\ldots,X_{m}), where m=3m=3 or m=4m=4 and GG is specific homogenous quintic form. First, we prove that if F(x,y,z)=x2+y2+az2+bxy+cyz+dxzZ[x,y,z]F(x,y,z)=x^2+y^2+az^2+bxy+cyz+dxz\in\Z[x,y,z] and (b2,4ad2,d)(0,0,0)(b-2,4a-d^2,d)\neq (0,0,0), then the Diophantine equation t2=nxyzF(x,y,z)t^2=nxyzF(x,y,z) has solution in polynomials x,y,z,tx, y, z, t with integer coefficients, without polynomial common factor of positive degree. In case a=d=0,b=2a=d=0, b=2 we prove that there are infinitely many primitive integer solutions of the Diophantine equation under consideration. As an application of our result we prove that for each n\in\Q\setminus\{0\} the Diophantine equation \begin{equation*} T^2=n(X_{1}^5+X_{2}^5+X_{3}^5+X_{4}^5) \end{equation*} has a solution in co-prime (non-homogenous) polynomials in two variables with integer coefficients. We also present a method which sometimes allow us to prove the existence of primitive integers solutions of more general quintic Diophantine equation of the form T2=aX15+bX25+cX35+dX45T^2=aX_{1}^5+bX_{2}^5+cX_{3}^5+dX_{4}^5, where a,b,c,dZa, b, c, d\in\Z. In particular, we prove that for each m,nZ{0},m, n\in\Z\setminus\{0\}, the Diophantine equation \begin{equation*} T^2=m(X_{1}^5-X_{2}^5)+n^2(X_{3}^5-X_{4}^5) \end{equation*} has a solution in polynomials which are co-prime over Z[t]\Z[t]. Moreover, we show how modification of the presented method can be used in order to prove that for each n\in\Q\setminus\{0\}, the Diophantine equation \begin{equation*} t^2=n(X_{1}^5+X_{2}^5-2X_{3}^5) \end{equation*} has a solution in polynomials which are co-prime over Z[t]\Z[t].Comment: 17 pages, submitte

    Similar works

    Full text

    thumbnail-image