In this paper we apply the formal Inverse Spectral Transform for integrable
dispersionless PDEs arising from the commutation condition of pairs of
one-parameter families of vector fields, recently developed by S. V. Manakov
and one of the authors, to one distinguished class of equations, the so-called
Dunajski hierarchy. We concentrate, for concreteness, i) on the system of PDEs
characterizing a general anti-self-dual conformal structure in neutral
signature, ii) on its first commuting flow, and iii) on some of their basic and
novel reductions. We formally solve their Cauchy problem and we use it to
construct the longtime behavior of solutions, showing, in particular, that
unlike the case of soliton PDEs, different dispersionless PDEs belonging to the
same hierarchy of commuting flows evolve in time in very different ways,
exhibiting either a smooth dynamics or a gradient catastrophe at finite time