Stellar activity and, in particular, convection-related surface structures,
potentially cause fluctuations that can affect the transit light curves.
Surface convection simulations can help the interpretation of ToV. We used
realistic three-dimensional radiative hydrodynamical simulation of the Sun from
the Stagger-grid and synthetic images computed with the radiative transfer code
Optim3D to provide predictions for the transit of Venus in 2004 observed by the
satellite ACRIMSAT. We computed intensity maps from RHD simulation of the Sun
and produced synthetic stellar disk image. We computed the light curve and
compared it to the ACRIMSAT observations and also to the light curves obtained
with solar surface representations carried out using radial profiles with
different limb-darkening laws. We also applied the same spherical tile imaging
method to the observations of center-to-limb Sun granulation with HINODE. We
managed to explain ACRIMSAT observations of 2004 ToV and showed that the
granulation pattern causes fluctuations in the transit light curve. We
evaluated the contribution of the granulation to the ToV. We showed that the
granulation pattern can partially explain the observed discrepancies between
models and data. This confirms that the limb-darkening and the granulation
pattern simulated in 3D RHD Sun represent well what is imaged by HINODE. In the
end, we found that the Venus's aureole contribution during ToV is less intense
than the solar photosphere, and thus negligible. Being able to explain
consistently the data of 2004 ToV is a new step forward for 3D RHD simulations
that are becoming essential for the detection and characterization of
exoplanets. They show that the granulation have to be considered as an
intrinsic incertitude, due to the stellar variability, on precise measurements
of exoplanet transits of, most likely, planets with small diameters.Comment: Accepted for publication in Astronomy and Astrophysic