It has been hypothesized that in the era just before the last universal
common ancestor emerged, life on earth was fundamentally collective. Ancient
life forms shared their genetic material freely through massive horizontal gene
transfer (HGT). At a certain point, however, life made a transition to the
modern era of individuality and vertical descent. Here we present a minimal
model for this hypothesized "Darwinian transition." The model suggests that
HGT-dominated dynamics may have been intermittently interrupted by
selection-driven processes during which genotypes became fitter and decreased
their inclination toward HGT. Stochastic switching in the population dynamics
with three-point (hypernetwork) interactions may have destabilized the
HGT-dominated collective state and led to the emergence of vertical descent and
the first well-defined species in early evolution. A nonlinear analysis of a
stochastic model dynamics covering key features of evolutionary processes (such
as selection, mutation, drift and HGT) supports this view. Our findings thus
suggest a viable route from early collective evolution to the start of
individuality and vertical Darwinian evolution, enabling the emergence of the
first species.Comment: 9 pages, 5 figures, under review at Physical Review