research

Motion of a droplet for the mass-conserving stochastic Allen-Cahn equation

Abstract

We study the stochastic mass-conserving Allen-Cahn equation posed on a bounded two-dimensional domain with additive spatially smooth space-time noise. This equation associated with a small positive parameter describes the stochastic motion of a small almost semicircular droplet attached to domain's boundary and moving towards a point of locally maximum curvature. We apply It\^o calculus to derive the stochastic dynamics of the droplet by utilizing the approximately invariant manifold introduced by Alikakos, Chen and Fusco for the deterministic problem. In the stochastic case depending on the scaling, the motion is driven by the change in the curvature of the boundary and the stochastic forcing. Moreover, under the assumption of a sufficiently small noise strength, we establish stochastic stability of a neighborhood of the manifold of droplets in L2L^2 and H1H^1, which means that with overwhelming probability the solution stays close to the manifold for very long time-scales

    Similar works