The design of retaining walls requires the complete knowledge of the earth
pressure distribution behind the wall. Due to the complex soil-structure
effect, the estimation of earth pressure is not an easy task; even in the
static case. The problem becomes even more complex for the dynamic (i.e.,
seismic) analysis and design of retaining walls. Several earth pressure models
have been developed over the years to integrate the dynamic earth pressure with
the static earth pressure and to improve the design of retaining wall in
seismic regions. Among all the models, MononobeOkabe (M-O) method is commonly
used to estimate the magnitude of seismic earth pressures in retaining walls
and is adopted in design practices around the world (e.g., EuroCode and
Australian Standards). However, the M-O method has several drawbacks and does
not provide reliable estimate of the earth pressure in many instances. This
study investigates the accuracy of the M-O method to predict the dynamic earth
pressure in sheet pile wall. A 2D plane strain finite element model of the
wall-soil system was developed in DIANA. The backfill soil was modelled with
Mohr-Coulomb failure criterion while the wall was assumed behave elastically.
The numerically predicted dynamic earth pressure was compared with the M-O
model prediction. Further, the point of application of total dynamic force was
determined and compared with the static case. Finally, the applicability of M-O
methods to compute the seismic earth pressure was discussed