Hashtags are semantico-syntactic constructs used across various social
networking and microblogging platforms to enable users to start a topic
specific discussion or classify a post into a desired category. Segmenting and
linking the entities present within the hashtags could therefore help in better
understanding and extraction of information shared across the social media.
However, due to lack of space delimiters in the hashtags (e.g #nsavssnowden),
the segmentation of hashtags into constituent entities ("NSA" and "Edward
Snowden" in this case) is not a trivial task. Most of the current
state-of-the-art social media analytics systems like Sentiment Analysis and
Entity Linking tend to either ignore hashtags, or treat them as a single word.
In this paper, we present a context aware approach to segment and link entities
in the hashtags to a knowledge base (KB) entry, based on the context within the
tweet. Our approach segments and links the entities in hashtags such that the
coherence between hashtag semantics and the tweet is maximized. To the best of
our knowledge, no existing study addresses the issue of linking entities in
hashtags for extracting semantic information. We evaluate our method on two
different datasets, and demonstrate the effectiveness of our technique in
improving the overall entity linking in tweets via additional semantic
information provided by segmenting and linking entities in a hashtag.Comment: To Appear in 37th European Conference on Information Retrieva