L.Huang [Linear Algebra Appl. 331 (2001) 21-30] gave a canonical form of a
quaternion matrix A with respect to consimilarity transformations
S~−1AS in which S is a nonsingular quaternion matrix and
h~:=a−bi+cj−dk for each quaternion h=a+bi+cj+dk. We give an
analogous canonical form of a quaternion matrix with respect to consimilarity
transformations S^−1AS in which h↦h^ is an arbitrary
involutive automorphism of the skew field of quaternions. We apply the obtained
canonical form to the quaternion matrix equations AX−X^B=C and
X−AX^B=C