research

Randomized Rounding for the Largest Simplex Problem

Abstract

The maximum volume jj-simplex problem asks to compute the jj-dimensional simplex of maximum volume inside the convex hull of a given set of nn points in Qd\mathbb{Q}^d. We give a deterministic approximation algorithm for this problem which achieves an approximation ratio of ej/2+o(j)e^{j/2 + o(j)}. The problem is known to be NP\mathrm{NP}-hard to approximate within a factor of cjc^{j} for some constant c>1c > 1. Our algorithm also gives a factor ej+o(j)e^{j + o(j)} approximation for the problem of finding the principal j×jj\times j submatrix of a rank dd positive semidefinite matrix with the largest determinant. We achieve our approximation by rounding solutions to a generalization of the DD-optimal design problem, or, equivalently, the dual of an appropriate smallest enclosing ellipsoid problem. Our arguments give a short and simple proof of a restricted invertibility principle for determinants

    Similar works

    Full text

    thumbnail-image

    Available Versions