research

Successive Radii and Ball Operators in Generalized Minkowski Spaces

Abstract

We investigate elementary properties of successive radii in generalized Minkowski spaces (that is, with respect to gauges), i.e., we measure the "size" of a given convex set in a finite-dimensional real vector space with respect to another convex set. This is done via formulating some kind of minimal containment problems, where intersections or Minkowski sums of the latter set and affine flats of a certain dimension are incorporated. Since this is strongly related to minimax location problems and to the notions of diametrical completeness and constant width, we also have a look at ball intersections and ball hulls.Comment: submitted to "Advances of Geometry

    Similar works

    Full text

    thumbnail-image

    Available Versions