research

Optimization of sharp and viewing-angle-independent structural color

Abstract

Structural coloration produces some of the most brilliant colors in nature and has many applications. However, the two competing properties of narrow bandwidth and broad viewing angle have not been achieved simultaneously in previous studies. Here, we use numerical optimization to discover geometries where a sharp 7% bandwidth in scattering is achieved, yet the peak wavelength varies less than 1%, and the peak height and peak width vary less than 6% over broad viewing angles (0--90^\circ) under a directional illumination. Our model system consists of dipole scatterers arranged into several rings; interference among the scattered waves is optimized to yield the wavelength-selective and angle-insensitive response. Such designs can be useful for the recently proposed transparent displays that are based on wavelength-selective scattering

    Similar works