Generative models provide a powerful framework for probabilistic reasoning.
However, in many domains their use has been hampered by the practical
difficulties of inference. This is particularly the case in computer vision,
where models of the imaging process tend to be large, loopy and layered. For
this reason bottom-up conditional models have traditionally dominated in such
domains. We find that widely-used, general-purpose message passing inference
algorithms such as Expectation Propagation (EP) and Variational Message Passing
(VMP) fail on the simplest of vision models. With these models in mind, we
introduce a modification to message passing that learns to exploit their
layered structure by passing 'consensus' messages that guide inference towards
good solutions. Experiments on a variety of problems show that the proposed
technique leads to significantly more accurate inference results, not only when
compared to standard EP and VMP, but also when compared to competitive
bottom-up conditional models.Comment: Appearing in Proceedings of the 18th International Conference on
Artificial Intelligence and Statistics (AISTATS) 201