slides

Editing to Eulerian Graphs

Abstract

We investigate the problem of modifying a graph into a connected graph in which the degree of each vertex satisfies a prescribed parity constraint. Let eaea, eded and vdvd denote the operations edge addition, edge deletion and vertex deletion respectively. For any S{ea,ed,vd}S\subseteq \{ea,ed,vd\}, we define Connected Degree Parity Editing(S)(S) (CDPE(SS)) to be the problem that takes as input a graph GG, an integer kk and a function δ ⁣:V(G){0,1}\delta\colon V(G)\rightarrow\{0,1\}, and asks whether GG can be modified into a connected graph HH with dH(v)δ(v) (mod 2)d_{H}(v)\equiv\delta(v)~(\bmod~2) for each vV(H)v\in V(H), using at most kk operations from SS. We prove that 1. if S={ea}S=\{ea\} or S={ea,ed}S=\{ea,ed\}, then CDPE(SS) can be solved in polynomial time; 2. if {vd}S{ea,ed,vd}\{vd\} \subseteq S\subseteq \{ea,ed,vd\}, then CDPE(SS) is NP-complete and W[1]-hard when parameterized by kk, even if δ0\delta\equiv 0. Together with known results by Cai and Yang and by Cygan, Marx, Pilipczuk, Pilipczuk and Schlotter, our results completely classify the classical and parameterized complexity of the CDPE(SS) problem for all S{ea,ed,vd}S\subseteq \{ea,ed,vd\}. We obtain the same classification for a natural variant of the CDPE(SS) problem on directed graphs, where the target is a weakly connected digraph in which the difference between the in- and out-degree of every vertex equals a prescribed value. As an important implication of our results, we obtain polynomial-time algorithms for the Eulerian Editing problem and its directed variant.Comment: 33 pages. An extended abstract of this paper will appear in the proceedings of FSTTCS 201

    Similar works