Computer modeling of electrostatic steering and orientational effects in antibody-antigen association.

Abstract

Brownian dynamics simulations are performed to investigate the role of long-range electrostatic forces in the association of the monoclonal antibody HyHEL-5 with hen egg lysozyme. The electrostatic field of the antibody is obtained from a solution of the nonlinear Poisson-Boltzmann using the x-ray crystal coordinates of this protein. The lysozyme is represented as an asymmetric dumbell consisting of two spheres of unequal size, an arrangement that allows for the modeling of the orientational requirements for docking. Calculations are done with the wild-type antibody and several point mutants at different ionic strengths. Changes in the charge distribution of the lysozyme are also considered. Results are compared with experiment and a simpler model in which the lysozyme is approximately by a single charged sphere

    Similar works