CORE
CO
nnecting
RE
positories
Services
Services overview
Explore all CORE services
Access to raw data
API
Dataset
FastSync
Content discovery
Recommender
Discovery
OAI identifiers
OAI Resolver
Managing content
Dashboard
Bespoke contracts
Consultancy services
Support us
Support us
Membership
Sponsorship
Research partnership
About
About
About us
Our mission
Team
Blog
FAQs
Contact us
Community governance
Governance
Advisory Board
Board of supporters
Research network
Innovations
Our research
Labs
research
The nature and role of the gold-krypton interactions in small neutral gold clusters
Authors
David M. Benoit
Luis A. Mancera
Publication date
5 March 2015
Publisher
'American Chemical Society (ACS)'
Doi
Abstract
© 2015 American Chemical Society. We investigate the nature and role of krypton embedding in small neutral gold clusters. For some of these clusters, we observe a particular site-dependent character of the Kr binding that does not completely follow the criterion of binding at low-coordinated sites, widely accepted for interaction of a noble gas with closed-shell metal systems such as metal surfaces. We aim at understanding the effect of low dimensionality and open-shell electronic structure of the odd-numbered clusters on the noble gas-metal cluster interaction. First, we investigate the role of attractive and repulsive forces, and the frontier molecular orbitals. Second, we investigate the Au-Kr interaction in terms of reactivity and bonding character. We use a reactivity index derived from Fukui formalism, and criteria provided by the electron localization function (ELF), in order to classify the type of bonding. We carry out this study on the minimum energy structures of neutral gold clusters, as obtained using pseudo potential plane-wave density functional theory (DFT). A model is proposed that includes the effect of attractive electrostatic, van der Waals and repulsive forces, together with effects originating from orbital overlap. This satisfactorily explains minimum configurations of the noble gas-gold cluster systems, the site preference of the noble gas atoms, and changes in electronic properties
Similar works
Full text
Open in the Core reader
Download PDF
Available Versions
Crossref
See this paper in CORE
Go to the repository landing page
Download from data provider
info:doi/10.1021%2Fjp513021q
Last time updated on 05/11/2020
Supporting member
Repository@Hull - Worktribe
See this paper in CORE
Go to the repository landing page
Download from data provider
oai:hull-repository.worktribe....
Last time updated on 27/02/2018
University of Hull Institutional Repository
See this paper in CORE
Go to the repository landing page
Download from data provider
oai:hull-repository.worktribe....
Last time updated on 10/07/2023