Data Management in Component-Based   Embedded Real-Time Systems

Abstract

This thesis presents new data management techniques for run-time data in component-based embedded real-time systems. These techniques enable data to be modeled, analyzed and structured to improve data management during system development, maintenance, and execution. The foundation of our work is a case-study that identifies a number of problems with current state-of-practice in data management for industrial embedded real-time systems. We introduce two novel concepts: the data entity and the database proxy. The data entity is a design-time concept that allows designers to manage data objects throughout different design and maintenance activities. It includes data-type specification, documentation, specification of timing and quality properties, tracing of dependencies between data objects, and enables analysis and automated validation. The database proxy is a run-time concept designed to allow the use of state-of-the-art database technologies in contemporary software-component technologies for embedded systems. Database proxies decouple components from an underlying database residing in the component framework. This allows components to remain encapsulated and reusable, while providing temporally predictable access to data maintained in a database, thus enabling the use of database technologies, which has previously excluded, in these systems. To validate our proposed techniques, we present a tool implementation of the data entity as well as implementations of the database proxy approach, using commercial tools, the AUTOSAR standardized automotive software architecture, and automotive hardware.  Our results show that the presented techniques can contribute to the development of future component-based embedded real-time systems, by providing structured and efficient data management

    Similar works