research

Post-early Messinian counterclockwise rotations on Crete: implications for Late Miocene to Recent kinematics of the southern Hellenic arc

Abstract

Most geodynamical models for the kinematics of the central Mediterranean recognise that major tectonic rotations must have played an important role during the Neogene. The Hellenic arc is believed to have been subjected to clockwise rotations in the west and counterclockwise rotations in the east, while the southern part (Crete) shows no rotations (Kissel and Laj, 1988). Many qualitative and quantitative models are based on the idea that Crete did not rotate. We present new palaeomagnetic data which show that post-early Messinian counterclockwise rotations have occurred on Crete. The amount of counterclockwise rotation generally varies between 10º and 20º, but in central Crete much larger rotations (up to 40º counterclockwise) were found. Only a few sections did not show any rotation. The anisotropy of magnetic susceptibility (AMS) shows lineations, which are consistently WNWESE throughout Crete, indicating post-rotational WNW-ESE extension, or NNE-SSE compression. The observed counterclockwise rotations are consistent with the results of tectonic modelling by Ten Veen and Meijer (1998). The latter study compares the late-Middle Miocene to Recent kinematics with modelled intra-plate stresses for various possible distributions of plate boundary forces. Observations reveal that motion along left-lateral and right-lateral faults occurred during the Pliocene. The model analysis shows these motions to be consistent with transform resistance along the eastern segment of the overriding margin. The counterclockwise block rotations observed by us are probably a consequence of displacements along the left-lateral and right-lateral faults and could reflect a similar tectonic regime that involved transform resistance. Ó 1998 Elsevier Science B.V. All rights reserved

    Similar works