research

Comparison of the roles of mitogen-activated protein kinase kinase and phosphatidylinositol 3-kinase signal transduction in neutrophil effector function

Abstract

Although it is known that many stimuli can activate mitogen- activated protein kinases (MAPKs) and phosphatidylinositol 3- kinases (PI3K) in human neutrophils, little is known concerning either the mechanisms or function of this activation. We have utilized a selective inhibitor of MAPKkinase (MEK), PD098059, and two inhibitors of PI3K, wortmannin and LY294002, to investigate the roles of these kinases in the regulation of neutrophil effector functions. Granulocyte/macrophage colony- stimulating factor, platelet-activating factor (PAF) and N-for- mylmethionyl-leucyl-phenylalanine are capable of activating both p44^(ERK1) and p42^(ERK2) MAPKs and phosphotyrosine-asso- ciated PI3K in human neutrophils. The activation of extracellular signal-related protein kinases (ERKs) is correlated with the activation of p21^(ras) by both tyrosine kinase and G-protein- coupled receptors as measured by a novel assay for GTP loading. Wortmannin and LY294002 inhibit, to various degrees, super- oxide generation, neutrophil migration and PAF release. In- cubation with PD098059, however, inhibits only the PAF release stimulated by serum-treated zymosan. This demonstrates that, while neither MEK nor ERK kinases are involved in the acti- vation of respiratory burst or neutrophil migration, inhibition of PAF release suggests a potential role in the activation of cytosolic phospholipase A2 . PI3K isoforms, however, seem to have a much wider role in regulating neutrophil functioning

    Similar works