CORE
CO
nnecting
RE
positories
Services
Services overview
Explore all CORE services
Access to raw data
API
Dataset
FastSync
Content discovery
Recommender
Discovery
OAI identifiers
OAI Resolver
Managing content
Dashboard
Bespoke contracts
Consultancy services
Support us
Support us
Membership
Sponsorship
Research partnership
About
About
About us
Our mission
Team
Blog
FAQs
Contact us
Community governance
Governance
Advisory Board
Board of supporters
Research network
Innovations
Our research
Labs
Two approaches for synthesizing scalable residential energy consumption data
Authors
H Huo
N Iftikhar
+3 more
R Li
X Liu
PS Nielsen
Publication date
1 January 2019
Publisher
'Elsevier BV'
Doi
Abstract
© 2019 Elsevier B.V. Many fields require scalable and detailed energy consumption data for different study purposes. However, due to privacy issues, it is often difficult to obtain sufficiently large datasets. This paper proposes two different methods for synthesizing fine-grained energy consumption data for residential households, namely a regression-based method and a probability-based method. They each use a supervised machine learning method, which trains models with a relatively small real-world dataset and then generates large-scale time series based on the models. This paper describes the two methods in details, including data generation process, optimization techniques, and parallel data generation. This paper evaluates the performance of the two methods, which compare the resulting consumption profiles with real-world data, including patterns, statistics, and parallel data generation in the cluster. The results demonstrate the effectiveness of the proposed methods and their efficiency in generating large-scale datasets
Similar works
Full text
Available Versions
Online Research Database In Technology
See this paper in CORE
Go to the repository landing page
Download from data provider
oai:pure.atira.dk:publications...
Last time updated on 28/03/2019
OPUS - University of Technology Sydney
See this paper in CORE
Go to the repository landing page
Download from data provider
oai:opus.lib.uts.edu.au:10453/...
Last time updated on 18/10/2019