Efficient active SLAM based on submap joining

Abstract

This paper considers the active SLAM problem where a robot is required to cover a given area while at the same time performing simultaneous localization and mapping (SLAM) for understanding the environment and localizing the robot itself. We propose a model predictive control (MPC) framework, and the minimization of uncertainty in SLAM and coverage problems are solved respectively by the Sequential Quadratic Programming (SQP) method. Then, a decision making process is used to control the switching of two control inputs. In order to reduce the estimation and planning time, we use Linear SLAM, which is a submap joining approach. Simulation results are presented to validate the effectiveness of the proposed active SLAM strategy

    Similar works

    Full text

    thumbnail-image