CORE
CO
nnecting
RE
positories
Services
Services overview
Explore all CORE services
Access to raw data
API
Dataset
FastSync
Content discovery
Recommender
Discovery
OAI identifiers
OAI Resolver
Managing content
Dashboard
Bespoke contracts
Consultancy services
Support us
Support us
Membership
Sponsorship
Research partnership
About
About
About us
Our mission
Team
Blog
FAQs
Contact us
Community governance
Governance
Advisory Board
Board of supporters
Research network
Innovations
Our research
Labs
Cryopreservation of UVC pathogen-inactivated platelets
Authors
L Johnson
DC Marks
MP Padula
L Waters
Publication date
1 June 2019
Publisher
'Wiley'
Doi
Abstract
© 2019 AABB BACKGROUND: Extending the platelet (PLT) shelf life and enhancing product safety may be achieved by combining cryopreservation and pathogen inactivation (PI). Although studied individually, limited investigations into combining these treatments has been performed. The aim of this study was to investigate the effect of PI treating PLTs before cryopreservation on in vitro PLT quality and function. STUDY DESIGN AND METHODS: ABO-matched buffy coat–derived PLTs in PLT additive solution (SSP+; Macopharma) were pooled and split to form matched pairs (n = 8). One unit remained untreated and the other was treated with the THERAFLEX UV-Platelets System (UVC; Macopharma). For cryopreservation, 5% to 6% dimethyl sulfoxide was added to the PLTs, and they were frozen at −80°C. After being thawed, untreated cryopreserved PLTs (CPPs) and UVC-treated CPPs (UVC-CPPs) were resuspended in plasma. In vitro quality was assessed immediately after thawing and after 24 hours of room temperature storage. RESULTS: UVC-CPPs had lower in vitro recovery compared to CPPs. By flow cytometry, PLTs demonstrated a similar abundance of GPIX (CD42a), GPIIb (CD41a), and GPIbα (CD42b-HIP1), while the activation of GPIIb/IIIa (PAC-1) was increased in UVC-CPPs compared to CPPs. UVC-CPPs demonstrated greater phosphatidylserine exposure (annexin V) and microparticle shedding but similar P-selectin (CD62P) abundance compared to CPPs. UVC-CPPs displayed similar functionality to CPPs when assessed using aggregometry, thromboelastography, and thrombin generation. CONCLUSIONS: This study demonstrates the feasibility of cryopreserving UVC-PI–treated PLT products. UVC-PI treatment may increase the susceptibility of PLTs to damage caused during cryopreservation, but this is more pronounced during postthaw storage at room temperature
Similar works
Full text
Available Versions
Crossref
See this paper in CORE
Go to the repository landing page
Download from data provider
Last time updated on 11/12/2019
OPUS - University of Technology Sydney
See this paper in CORE
Go to the repository landing page
Download from data provider
oai:opus.lib.uts.edu.au:10453/...
Last time updated on 18/10/2019