CORE
CO
nnecting
RE
positories
Services
Services overview
Explore all CORE services
Access to raw data
API
Dataset
FastSync
Content discovery
Recommender
Discovery
OAI identifiers
OAI Resolver
Managing content
Dashboard
Bespoke contracts
Consultancy services
Support us
Support us
Membership
Sponsorship
Research partnership
About
About
About us
Our mission
Team
Blog
FAQs
Contact us
Community governance
Governance
Advisory Board
Board of supporters
Research network
Innovations
Our research
Labs
Enhancing tristetraprolin activity reduces the severity of cigarette smoke-induced experimental chronic obstructive pulmonary disease
Authors
AJ Ammit
AR Clark
+10 more
AM Collison
PM Hansbro
TJ Haw
G Liu
J Mattes
JC Morris
PM Nair
MR Starkey
NM Verrills
PA Wark
Publication date
1 January 2019
Publisher
'Wiley'
Doi
Cite
Abstract
© 2019 The Authors. Clinical & Translational Immunology published by John Wiley & Sons Australia, Ltd on behalf of Australian and New Zealand Society for Immunology Inc. Objective: Chronic obstructive pulmonary disease (COPD) is a progressive disease that causes significant mortality and morbidity worldwide and is primarily caused by the inhalation of cigarette smoke (CS). Lack of effective treatments for COPD means there is an urgent need to identify new therapeutic strategies for the underlying mechanisms of pathogenesis. Tristetraprolin (TTP) encoded by the Zfp36 gene is an anti-inflammatory protein that induces mRNA decay, especially of transcripts encoding inflammatory cytokines, including those implicated in COPD. Methods: Here, we identify a novel protective role for TTP in CS-induced experimental COPD using Zfp36aa/aa mice, a genetically modified mouse strain in which endogenous TTP cannot be phosphorylated, rendering it constitutively active as an mRNA-destabilising factor. TTP wild-type (Zfp36+/+) and Zfp36aa/aa active C57BL/6J mice were exposed to CS for four days or eight weeks, and the impact on acute inflammatory responses or chronic features of COPD, respectively, was assessed. Results: After four days of CS exposure, Zfp36aa/aa mice had reduced numbers of airway neutrophils and lymphocytes and mRNA expression levels of cytokines compared to wild-type controls. After eight weeks, Zfp36aa/aa mice had reduced pulmonary inflammation, airway remodelling and emphysema-like alveolar enlargement, and lung function was improved. We then used pharmacological treatments in vivo (protein phosphatase 2A activator, AAL(S), and the proteasome inhibitor, bortezomib) to promote the activation and stabilisation of TTP and show that hallmark features of CS-induced experimental COPD were ameliorated. Conclusion: Collectively, our study provides the first evidence for the therapeutic potential of inducing TTP as a treatment for COPD
Similar works
Full text
Available Versions
UNSWorks
See this paper in CORE
Go to the repository landing page
Download from data provider
oai:unsworks.library.unsw.edu....
Last time updated on 15/05/2024
Crossref
See this paper in CORE
Go to the repository landing page
Download from data provider
Last time updated on 20/06/2021
OPUS - University of Technology Sydney
See this paper in CORE
Go to the repository landing page
Download from data provider
oai:opus.lib.uts.edu.au:10453/...
Last time updated on 20/04/2021