The regulated incorporation of AMPA receptors into synapses is important for synaptic plasticity. Here we examine the role of protein kinase A (PKA) in this process. We found that PKA phosphorylation of the AMPA receptor subunits GluR4 and GluR1 directly controlled the synaptic incorporation of AMPA receptors in organotypic slices from rat hippocampus. Activity-driven PKA phosphorylation of GluR4 was necessary and sufficient to relieve a retention interaction and drive receptors into synapses. In contrast, PKA phosphorylation of GluR1 and the activity of calcium/calmodulin-dependent kinase II (CaMKII) were both necessary for receptor incorporation. Thus, PKA phosphorylation of AMPA receptor subunits contributes to diverse mechanisms underlying synaptic plasticity