unknown

Ontogeny of avian thermoregulation from a neural point of view

Abstract

The ontogeny of thermoregulation differs among (avian) species, but in all species both neural and endocrinological processes are involved. In this review the neural processes in ontogeny of thermoregulation during the prenatal and early postnatal phase are discussed. Only in a few avian species (chicken, ducklings) the ontogeny of some important neural structures are described. In the early post hatching phase, peripheral and deep-body thermoreceptors are present and functional, even in altricial species, in which the thermoregulation is still immature at hatch. It is suggested that the development of peripheral and deep-body thermoreceptors is not responsible for the inability to maintain a stable body temperature at cold ambient temperatures during early postnatal phase, although studies examined the ontogeny of thermoreception only in an indirect manner. Thus, other factors, such as volume to surface ratio and rate of insulation are important. Studies regarding the ontogeny of hypothalamic cold- and warm-sensitivity neurons in precocial species demonstrate that maturation of the hypothalamic temperature sensitivity takes place during the late prenatal and early postnatal period, with a relatively high cold sensitivity of the hypothalamus during the transition from poikilotherm to homeotherm. In addition, incubation temperatures are demonstrated to influence postnatal hypothalamic thermosensitivity. Brain temperature regulation is found to maturate during avian ontogeny as well and is demonstrated to coincide with the ontogenic pattern of general thermoregulation in several avian species. Relevant information of the ontogeny of the spinal cord and effector pathways related to the development of avian thermoregulation is lacking. We concluded that both prenatal and early postnatal temperature affects hypothalamic thermosensitivity and consequently condition thermoregulation in later life

    Similar works