Biogeographical patterns derived from remote sensing variables: the amphibians and reptiles of the Iberian Peninsula

Abstract

The biogeographic patterns in species density of herptiles were analysed in the Iberian Peninsula. Geoclimatic regions were identified using a PCA. Individual habitat suitability (HS) models for 23 amphibians and 35 reptiles at 10 x 10 km scale were calculated with ENFA, using 12 environmental factors established with Remote Sensing (RS) techniques. The species presence proportion in each geoclimatic region was calculated through a cross-tabulation between each potential occurrence model and the geoclimatic regions. Species chorotypes were determined through Hierarchical Cluster Analysis using Jaccard's index as association measure and by the analysis of marginality and tolerance factors from individual HS models. Predicted species density maps were calculated for each geoclimatic region. Probable under-sampled areas were estimated through differences between the predicted species density maps and observed (Gap analysis). The selected PCA components divided the Iberian Peninsula in two major geoclimatic regions largely corresponding to the Atlantic and Mediterranean climates. The Jaccard's index clustered herptiles in two main taxonomic groups, with distribution similar to the Atlantic and Mediterranean geoclimatic regions (7 amphibian + 13 reptile species in three Atlantic subgroups and 16 amphibian + 22 reptile species in four Mediterranean subgroups). Marginality and tolerance factor scores identified species groups of herptile specialists and generalists. The highest observed and predicted species density areas were broadly located in identical regions. Predicted gaps are located in north-western, north-east and central Iberia. RS is a useful tool for biogeographical studies, as it provides consistent environmental data from large areas with high accuracy

    Similar works