research

Adaptive energy minimization of OpenMP parallel applications on many-core systems

Abstract

Energy minimization of parallel applications is an emerging challenge for current and future generations of many-core computing systems. In this paper, we propose a novel and scalable energy minimization approach that suitably applies DVFS in the sequential part and jointly considers DVFS and dynamic core allocations in the parallel part. Fundamental to this approach is an iterative learning based control algorithm that adapt the voltage/frequency scaling and core allocations dynamically based on workload predictions and is guided by the CPU performance counters at regular intervals. The adaptation is facilitated through performance annotations in the application codes, defined in a modified OpenMP runtime library. The proposed approach is validated on an Intel Xeon E5-2630 platform with up to 24 CPUs running NAS parallel benchmark applications. We show that our proposed approach can effectively adapt to different architecture and core allocations and minimize energy consumption by up to 17% compared to the existing approaches for a given performance requirement

    Similar works

    Full text

    thumbnail-image

    Available Versions