An ultrafast reconfigurable nanophotonic switch using wavefront shaping of light in a nonlinear nanomaterial

Abstract

Wavefront shaping of light fields has opened up a wealth of new applications in imaging and communication in highly multimode environments [1-11]. By mixing of the modes with optimized phases and amplitudes it is possible to focus light through - or even inside - opaque scattering media [1,2]. Here we present work demonstrating ultrafast control of such an optimized wavefront transmitted through a dense disordered mat of semiconductor nanowires by exploiting their inherent nonlinearity. Modulations of the peak intensity of up to 63% (4.3 dB) are induced by optical pumping as a result of a combination of multimode dephasing and induced absorption. Next to ultrafast dephasing of the shaped field, we show that it is possible to dynamically rephase the light fields into an optimized spot by means of pulsed nonlinear excitation of the medium. We obtain an enhancement of the peak to background ratio of the optimized spot resulting from rephasing of up to 18%. While our results are obtained for three dimensional media, the concepts of multimode nonlinear switching are generally extendable to other systems, including plasmonic and photonic waveguides, thus enabling new avenues for ultrafast and reconfigurable nanophotonic devices

    Similar works

    Full text

    thumbnail-image

    Available Versions