research

Passive acoustic quantification of gas releases

Abstract

The assessment of undersea gas leakages from anthropogenic and natural sources is becoming increasingly important. This includes the detection of gas leaks and the quantification of gas flux. This has applications within oceanography (e.g. natural methane seeps) and the oil and gas industry (e.g. leaks from undersea gas pipelines, carbon capture and storage facilities). Gas escaping underwater can result in the formation of gas bubbles, and this leads to specific acoustic pressure fluctuations (sound) which can be analysed using passive acoustic systems. Such a technique offers the advantage of lower electrical power requirements for long term monitoring. It is common practice for researchers to identify single bubble injection events from time histories or time frequency representations of hydrophone data, and infer bubble sizes from the centre frequency of the emission. Such a technique is well suited for gas releases that represent low flow rates, and involving solitary bubble release. However, for larger events, with the overlapping of bubble acoustic emissions, the inability to discriminate each individual bubble injection event makes this approach inappropriate. In this study, an inverse method to quantify such release is used. The model is first outlined and following this its accuracy at different flow rate regimes is tested against experimental data collected from tests which took place in a large water tank. The direct measurements are compared to estimates inferred from acoustics.<br/

    Similar works

    Full text

    thumbnail-image

    Available Versions