Investigation of the rapid fabrication of multiple nanofoam materials via femtosecond laser irradiation

Abstract

Nanofoams are permeable, nanostructured materials, which have applications in many areas, including electronics, biological sciences and aerospace engineering [1-4]. Nanofoam fabrication using an ultrafast laser enables control over the precise location as well as the fabrication rate, leading to the possibility of applications such as evanescent sensors and energy harvesting devices. Here, we extend our initial work on glass nanofoam fabrication [5] by demonstrating the production of metal, ceramic, polymer and novel chalcogenide glass nanofoam at atmospheric pressure, with dimensions of ~hundred microns in height and millimetre-square in area. Our investigation showed that both the volume and density of the nanofoam was a function of both the material as well as the exposure protocol (number of pulses and their energy density)

    Similar works

    Full text

    thumbnail-image

    Available Versions